How does a dc clampmeter work?

Ordinary clampmeters used to measure AC currents work on the principle of electromagnetic induction caused by the alternating current flowing in the conductor which reverses direction causing a dynamically changing magnetic field. However, in DC conductors, the current flows in a fixed polarity. Consequently, the magnetic field around the conductor is fixed and does not change. Hence, a conventional clamp meter will register no reading.

A DC clampmeter works on the principle of the Hall Effect. The Hall Effect, named after Edwin Hall who discovered it 1879, states that when a conductor carrying current is placed in a magnetic field, a potential is induced across the conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to the current. It is caused as the charge carriers, electrons or holes, experience a force known as the Lorentz force and are pushed to the sides of the conductor.

A clampmeter which works on the Hall effect has a sensor known as the Hall element. The Hall element is subjected to the magnetic field caused by the flow of current to be measured. This causes a small voltage across the Hall element. This voltage is amplified and measured.

images courtesy: commons.wikimedia.com
www.sensormag.com