The primary circuit of an engine consists of the battery, the ignition switch, a resistor, an Ignition module or contact points, and coil primary wiring. They are fitted so that the electricity flows continually through them. The primary circuit voltage is usually very low, it is about 12 volts. The wiring has a thin layer of insulation to save from short circuit.

The secondary system of circuitry is made of three basic components: ignition coil, the distributor, and the spark plug. This system is what is used for new formats like the distributor less ignition systems.

Ignition Coil
The ignition coil is made up of two separate cover of copper wire around a laminated iron core. A high-voltage current is produced in the secondary winding that has many turns of thin wire. This high-voltage current flows via the core portions of the distributor.

Distributor
The major duty of the distributor is to allow the current pass from the coil to the correct spark plug at the right time. It has a rotor inside that passes close to the spark plugs.

Spark Plug
The spark plug has to create a high-voltage spark needed to ignite the fuel mixture in the combustion chamber.


In cars, the parking brake is a latching brake generally used to keep the vehicle stationary. It is sometimes used to stop a vehicle from rolling when both feet are engaged.

A number of vehicles have been made with an independent drum brake on the transmission output shaft. It is called a driveline parking brake. This is completely independent of other braking systems. This brake is effective till drive train is intact. This type of parking brake is used by either a foot pedal or a hydraulic cylinder.

The integral brake is a kind of parking brake on the inside of the disk brake system. This system usually has cables to engage the parking brake as the normal drum brake system. There are usually two brake shoes in the rear drum. When the parking brake is pulled, it lets a cable tighten up the shoes so they press against the drum, holding or stopping the vehicle.


An indicator lamp is a type of warning device that alerts the drivers of problems with various parts of their vehicles. Oil pressure, water temperature and the voltage are usually showed on the dashboard indicator lamps.

In case of a dangerous reading from a engine sensor, the indicator lamp starts to illuminate. In fact, most cars produced nowadays have the basic indicator lamps to show potential problems.

For all functions of the automotive engine, a sensor is there to transmit signals to the dashboard. The need of a system of warning lights and indicators is to allow the driver to understand how the engine is operating.

The sensors are usually programmed to send a signal to the indicator lamp when there is a non-standard sensor reading. This signal illuminates the warning light, telling the driver that there is a problem with the engine.


An indicator lamp is a type of warning device that alerts the drivers of problems with various parts of their vehicles. Oil pressure, water temperature and the voltage are usually showed on the dashboard indicator lamps.

In case of a dangerous reading from a engine sensor, the indicator lamp starts to illuminate. In fact, most cars produced nowadays have the basic indicator lamps to show potential problems.

For all functions of the automotive engine, a sensor is there to transmit signals to the dashboard. The need of a system of warning lights and indicators is to allow the driver to understand how the engine is operating.

The sensors are usually programmed to send a signal to the indicator lamp when there is a non-standard sensor reading. This signal illuminates the warning light, telling the driver that there is a problem with the engine.


A Live axle is a type of beam axle. A beam axle is a suspension design, where a set of wheels is connected laterally by using one beam or shaft. Beam axles were common in the rear wheels, but they have also been used as front axles in rear-wheel-drive vehicles.

A live axle is a beam axle where the shaft or the shafts connected to move as a single unit transfers power to the wheels.

The beam axle that is not transmitting power is a dead axle. These axles are usually found in vehicles with Hotchkiss drive. However, such suspension systems are also found in other types of power transmission.

The basic advantage of the live axle is its simplicity which makes it very less space-consuming and relatively cheaper to manufacture. Live axles are almost used in all heavy-duty trucks and most light and medium duty pickup trucks, SUVs, and vans. These axles are almost always found in the rear set of wheels.



Automatic guided vehicle systems are robots or unmanned machines used to safely transport all kinds of products without human intervention within production, logistic, warehouse and distribution environments.

AGVs are used to consistently and predictably transport material to places that may be serviced by fork lift trucks, conveyors, or manual cart transport. They are generally used in warehouses where high volumes of repetitive movements of material is required, but only little or no human decision making skill is applicable to perform the movement. They are very useful in serving processes where there is no change is contact and use of barriers - such as conveyors - are undesirable in AGVs.

Application of the AGV has broadened during the late 20th century. AGVs often follow markers or wires in the floor, or use own vision, or magnets, or lasers for navigation within a limited range of transportation.



Automatic guided vehicle systems are robots or unmanned machines used to safely transport all kinds of products without human intervention within production, logistic, warehouse and distribution environments.

AGVs are used to consistently and predictably transport material to places that may be serviced by fork lift trucks, conveyors, or manual cart transport. They are generally used in warehouses where high volumes of repetitive movements of material is required, but only little or no human decision making skill is applicable to perform the movement. They are very useful in serving processes where there is no change is contact and use of barriers - such as conveyors - are undesirable in AGVs.

Application of the AGV has broadened during the late 20th century. AGVs often follow markers or wires in the floor, or use own vision, or magnets, or lasers for navigation within a limited range of transportation.



Sandpaper or Glasspaper are a type of coated abrasive that consists of sheets of paper or cloth with abrasive material affixed to one face. Nowadays, sand or glass is not used.


Sandpaper is produced in different sizes and is used to remove unwanted material from surfaces, either to make them smoother (in painting and wood finishing), to remove a layer of material (e.g. old paint), or to make surface rougher (in gluing).

Types
Backing:  Backing for sandpaper can have clothes (cotton, polyester, and rayon), PET film, and "fibre", or rubber apart from the paper.

Material: Garnet, emery, aluminium oxide, silicon carbide, alumina-zirconia, Chromium(III) oxide, ceramic aluminium oxide can also be used in sandpapers.

Bonds: Different adhesives, such as Hide glue, are used to bond the abrasive to the paper. Waterproof sandpapers use resin bond and a waterproof backing.

Open coat sandpapers have particles that are separated from each other and it is more flexible.


Sandpaper or Glasspaper are a type of coated abrasive that consists of sheets of paper or cloth with abrasive material affixed to one face. Nowadays, sand or glass is not used.


Sandpaper is produced in different sizes and is used to remove unwanted material from surfaces, either to make them smoother (in painting and wood finishing), to remove a layer of material (e.g. old paint), or to make surface rougher (in gluing).

Types
Backing:  Backing for sandpaper can have clothes (cotton, polyester, and rayon), PET film, and "fibre", or rubber apart from the paper.

Material: Garnet, emery, aluminium oxide, silicon carbide, alumina-zirconia, Chromium(III) oxide, ceramic aluminium oxide can also be used in sandpapers.

Bonds: Different adhesives, such as Hide glue, are used to bond the abrasive to the paper. Waterproof sandpapers use resin bond and a waterproof backing.

Open coat sandpapers have particles that are separated from each other and it is more flexible.



Abrasive Disc is a disc of abrasive material that rotates in a tool such as a sander. Abrasive discs are used usually for use in applications related to blending, finishing and polishing . Abrasive discs use the combination of several minerals, resin systems and backings for better functionality. 

This combination results in a wide range of products to meet various requirements for use on materials such as wood, gel coat, painted substrates, metal, composite, etc The discs are generally manufactured using a composite material with coarse-particle aggregate pressed and attached together using a cementing matrix to give it a solid, circular shape. 

Depending on the intended usage of the disc, various forms and cross sections are available. Abrasive Discs may also be built using a solid steel or aluminium disc with particles bonded to the surface. Most abrasive discs are artificial composites of artificial aggregates, but initially natural composite stones (millstones) were also used.



Abrasive Disc is a disc of abrasive material that rotates in a tool such as a sander. Abrasive discs are used usually for use in applications related to blending, finishing and polishing . Abrasive discs use the combination of several minerals, resin systems and backings for better functionality. 

This combination results in a wide range of products to meet various requirements for use on materials such as wood, gel coat, painted substrates, metal, composite, etc The discs are generally manufactured using a composite material with coarse-particle aggregate pressed and attached together using a cementing matrix to give it a solid, circular shape. 

Depending on the intended usage of the disc, various forms and cross sections are available. Abrasive Discs may also be built using a solid steel or aluminium disc with particles bonded to the surface. Most abrasive discs are artificial composites of artificial aggregates, but initially natural composite stones (millstones) were also used.


An Abrasive Cleaner is a type of mechanical cleaner that physically removes dirt, stains and tarnish the surface.  They are made up of particles or physical abraders and use friction to remove the dirt stains etc. Physical abraders include materials such as sandpaper, scrubbing,  padsteel wool.  Abrasiveness usually depends or coerciveness of the used material.

Depending on the harshness, there are three types of Abrasive Cleaners.

Mild Abrasives such as fine plastic mesh pads, soft brass wool, nylon coated sponges, rotten-stone and whiting are often used to clean pots and pans, interiors of ovens, and drip pans.

Examples of Moderate Abrasive Cleaners are fine pumice and fine steel wool. Steel wool has grades from 0000-super fine, 000-extra fine, 00-very fine, 0-fine, 1-medium, 2-medium coarse and 3-0 coarse.

Strong Abrasives are the strongest among abrasives. Examples include medium and coarse steel wool, metallic mesh cloths and balls, metallic brushes, coarse pumice, and sand/silica etc.


An Abrasive Cleaner is a type of mechanical cleaner that physically removes dirt, stains and tarnish the surface.  They are made up of particles or physical abraders and use friction to remove the dirt stains etc. Physical abraders include materials such as sandpaper, scrubbing,  padsteel wool.  Abrasiveness usually depends or coerciveness of the used material.

Depending on the harshness, there are three types of Abrasive Cleaners.

Mild Abrasives such as fine plastic mesh pads, soft brass wool, nylon coated sponges, rotten-stone and whiting are often used to clean pots and pans, interiors of ovens, and drip pans.

Examples of Moderate Abrasive Cleaners are fine pumice and fine steel wool. Steel wool has grades from 0000-super fine, 000-extra fine, 00-very fine, 0-fine, 1-medium, 2-medium coarse and 3-0 coarse.

Strong Abrasives are the strongest among abrasives. Examples include medium and coarse steel wool, metallic mesh cloths and balls, metallic brushes, coarse pumice, and sand/silica etc.